首页> 外文OA文献 >Degree and neighborhood intersection conditions restricted to induced subgraphs ensuring Hamiltonicity of graphs
【2h】

Degree and neighborhood intersection conditions restricted to induced subgraphs ensuring Hamiltonicity of graphs

机译:度和邻域交叉条件仅限于诱导   子图确保图的哈密尔顿性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let claw be the graph $K_{1,3}$. A graph $G$ on $n\geq 3$ vertices is called\emph{o}-heavy if each induced claw of $G$ has a pair of end-vertices withdegree sum at least $n$, and 1-heavy if at least one end-vertex of each inducedclaw of $G$ has degree at least $n/2$. In this note, we show that every2-connected $o$-heavy or 3-connected 1-heavy graph is Hamiltonian if werestrict Fan-type degree condition or neighborhood intersection condition tocertain pairs of vertices in some small induced subgraphs of the graph. Ourresults improve or extend previous results of Broersma et al., Chen et al.,Fan, Goodman & Hedetniemi, Gould & Jacobson, and Shi on the existence ofHamilton cycles in graphs.
机译:令claw为图$ K_ {1,3} $。 $ n \ geq 3 $顶点上的图形$ G $称为\ emph {o}-重,如果每个$ G $的诱导爪具有一对端点和,且其总和至少为$ n $,则为1-重$ G $的每个诱发爪的至少一个顶点的度数至少为$ n / 2 $。在此注释中,我们表明,如果严格的Fan型度条件或邻域相交条件确定图的某些小诱导子图中的成对顶点,则每2个连通的$ o $重或3个连通的1重图是哈密顿量。我们的结果改善或扩展了Broersma等,Chen等,Fan,Goodman&Hedetniemi,Gould&Jacobson和Shi关于图形中汉密尔顿循环的存在的先前结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号